
Development Environment

DII COE I&RTS: Rev 2.0 October 23, 1995 6-1

6.0 Development Environment

The COE imposes very few requirements on the process or tools developers use
to design and implement software. The COE concentrates on the end product
and how it will integrate in with the overall system. This approach provides the
flexibility to allow developers to conform to their internal development process
requirements. However, developers are expected to use good software
engineering practices and development tools to ensure robust products. The
purpose of this chapter is to suggest certain development practices that will
reduce integration problems, and the impact of one segment on another.

Developers may select compilers, debuggers, linkers, editors, CASE tools, etc.
that are most suitable for their development environment. However, the
compilers and linkers selected must be compatible with the products supplied
by the hardware vendors and must not require any special products for other
developers to use the segments produced.

Other specific suggestions and requirements follow:

¥ Segments which have public APIs written in C shall support ANSI C
function prototypes.

¥ Segments which have public APIs shall support linking with C++
modules. This is done by bracketing function definitions with

#ifdef __cplusplus
extern "C" {
#endif

function prototypes

#ifdef _cplusplus
}
#endif

¥ Segments written in C that have public APIs shall handle the condition
where a header file is included twice. This is accomplished by bracketing
the header file with #ifndef and #endif as follows:

#ifndef MYHEADER
#define MYHEADER

header file declarations

#endif

Development Environment

6-2 October 23, 1995 DII COE I&RTS: Rev 2.0

¥ Code delivered to DISA shall not be compiled with debug options
enabled, and the Unix strip utility shall be run on executables to
minimize the disk space required.

¥ Segments should use shared libraries where practical to reduce runtime
memory requirements. Segments with public APIs implemented as
shared libraries shall also be delivered as static libraries to make
debugging easier for developers who need to use the APIs.

¥ Developers may use GUI (Graphical User Interface) tools to build
interfaces, but developer's should select tools that are portable across
platforms. Segments built with such tools shall use resource files for
window behavior rather than embedded code, and must not require any
runtime licenses unless approved by the DISA Chief Engineer.

¥ Developers should run all modules through a tool such as lint to detect
potential coding errors prior to compiling.

¥ Developers should run all modules through commercially available tools
to detect as many runtime errors as possible (e.g., "memory leaks").

¥ Developers should periodically profile segments by using tools that do a
runtime analysis of module performance (% CPU utilization, number of
times a function is invoked, amount of time spent in a function, LAN
loading analysis, etc.).

¥ Developers should create a test suite for automatically exercising the
segment, especially inter-segment interfaces and APIs, and periodically
run the tests to perform regression testing. Segments with public APIs
shall be delivered with a test suite that covers all public APIs provided by
the segment.

¥ Developers should use a tool such as imake for generating portable
makefiles.

¥ Developers should use automated tools to perform configuration
management tasks.

¥ Developers should periodically rebuild segments from scratch to ensure
that all pieces, including data files, are under proper configuration
management control.

Development Directory Structure

DII COE I&RTS: Rev 2.0 October 23, 1995 6-3

6.1 Development Directory Structure

Developers may use whatever directory structure is most appropriate for their
development process. The installation tools will enforce the logical structure
presented in Chapter 5. However, the COE development tools allow segments
under development to be located arbitrarily on the disk. For example,

VerifySeg -p /home5/test/dev MySeg

indicates that the segment to be validated, MySeg, is located in the directory
/home5/test/dev. Similarly,

TestInstall -p /home5/test/dev MySeg

allows the segment to be temporarily installed from this directory for testing and
debugging.

Figure 6-1 shows an example segment directory structure. It has the advantage
that it separates public and private code into different subdirectories.
MySeg/libs are public libraries provided by the segment, while
MySeg/include are the public header files The src/PrivLibs subdirectory
should contain library modules that are private to the segment. Similarly, the
subdirectory src/PrivInc contains header files that are private to the
segment.

MySeg

dataScripts SegDescrip bin include libsrc

PrivInc PrivLibs ...

Figure 6-1: Example Development Directory Structure

The advantage of structuring directories in this fashion is that delivering
software to other developers means that only one directory must be deleted: the
src directory. Delivering the software to an operational site means that only
three directories need to be deleted: include, lib (unless shared libraries are
being used), and src. It is a simple matter to create automated scripts which can
generate tapes for both types of deliveries. An additional benefit is that public

Development Directory Structure

6-4 October 23, 1995 DII COE I&RTS: Rev 2.0

and private files are separated in the directory structure for easier management
and distribution.

Development Scripts

DII COE I&RTS: Rev 2.0 October 23, 1995 6-5

6.2 Development Scripts

The COE requires that a strict separation between the runtime environment and
the development environment be maintained. However, it is convenient to locate
development scripts in the same subdirectory as the runtime scripts (e.g.,
subdirectory Scripts). The recommended convention is to name development
scripts with a .dev extension to distinguish them from runtime environment
scripts. The .runtime extension can not be used since this has a special
meaning within the COE as explained in Chapter 5.

Developers may define environment variables for locating source code
directories, compilers, tools, and libraries. In addition, aliases can be defined as
shortcuts for frequently executed commands. None of these examples are
allowed in the runtime environment and hence must be placed in a development
script such as .cshrc.dev.

The following suggestions are made:

¥ Define environment variables relative to segprefix_HOME where
segprefix is the segment prefix. This allows segments to be easily
relocated on the disk.

¥ Use environment variables to define where to place libraries and
executables.

¥ Extend the path environment variable through concatenation - that is

set path = ($path $TOOLS)

where $TOOLS is the location of the COE development tools (e.g.,
/h/TOOLS).

¥ Use the same script for all supported platforms through use of the
environment variables MACHINE_CPU and MACHINE_OS.

Development Scripts

6-6 October 23, 1995 DII COE I&RTS: Rev 2.0

6.3 Private and Public Files

The software engineering principles of data abstraction and data hiding are
important in designing segments. Data abstraction refers to the process of
abstracting structures so that subscriber segments need not know low level
details of how data is physically organized. Data hiding refers to hiding data
elements that subscriber segments do not need, or are not authorized, to directly
access. Proper implementation of these two design principles prevents segments
from affecting each other through inadvertent side effects and isolates one
segment from changes in another.

It is also important to hide low level functions and only provide access to
segment functionality through a carefully controlled interface, the API. It is
neither feasible nor desirable to make all functions in a segment available due to
the sheer number of functions involved, and because changing a function that is
being used directly by another developer may have significant impact.

These concepts are implemented in Ada through the package construct. C,
however, does not contain an equivalent capability. The closest approximation in
C is the static directive which makes a function visible only within the scope of
the file containing the function definition. To compensate for structural
inadequacies in C, developers must segregate software into public and private
files, and into public and private directories. Since header files (e.g., .h files)
are used to define the interface to C functions, the concept is that header files
should be segregated into public and private files while public and private
directories are used to provide the same concept for libraries. Moreover,
segregation into distinct directories makes it easier to enforce the separation.

Developer's Toolkit

DII COE I&RTS: Rev 2.0 October 23, 1995 6-7

6.4 Developer's Toolkit

The Developer's Toolkit contains the components necessary for creating
segments that use COE components. The toolkit does not need to be in segment
format (it is not installed at operational sites), but is a set of files and directories
that may be downloaded electronically from the on-line library. Developer's may
also contact the DISA Engineering Office to receive the toolkit on magnetic
media in relative "tar" format.

The Developer's Toolkit is distributed separately from the target COE-based
system. However, components from the operational system (COE component
segments, shared libraries, etc.) are required for development. These may be
obtained electronically from the on-line library, or on magnetic media from the
DISA Engineering Office. Classified or very large components will be
distributed to developers via magnetic media. The toolkit does not duplicate any
components available in the runtime system because this would create
configuration management problems in ensuring that developers do not receive
two different versions of the same module.

As distributed, the toolkit contains the following:

¥ API libraries and object code
¥ C header files for public APIs
¥ On-line Unix man pages for APIs
¥ COE development tools (see Appendix C)
¥ Standards for creating APIs

The toolkit does not contain any products which require a license (compilers,
editors, RDBMS, etc.). It is the developer's responsibility to acquire these items as
needed.

Developers may install the toolkit on the disk in whatever directories are
desired. The standard location for toolkit components are:

public header files /h/COE/include
public libraries /h/COE/lib
executables /h/TOOLS/bin
man pages /h/TOOLS/man

Certain tools from Appendix C are useful for both the development environment
and the runtime environment. These tools are delivered with the operational
system and are located under /h/COE/bin.

Developer's Toolkit

6-8 October 23, 1995 DII COE I&RTS: Rev 2.0

Developers should include /h/TOOLS/bin in the path environment variable
for their development environment. /h/TOOLS/man should also be included in
the search path for Unix man pages.

Developers are encouraged to submit tools to the COE community for inclusion
in the developer's toolkit. All tools submitted must be license and royalty free,
and must include a man page for on-line documentation. Developers wishing to
release source code for their contributed tools may do so, and the source code for
the tool will be organized under the /h/TOOLS/src directory.

